A REVIEW OF THE LITERATURE ON THE VARIOUS FUNCTIONS OF CHAPERONE PROTEINS INAXONAL DAMAGE AND NERVE REGENERATION

Authors

  • Nabila Maudy Salma
  • Ria Margiana
  • Ahmad Aulia Jusuf

DOI:

https://doi.org/10.53555/eijmhs.v9i3.190

Keywords:

brain regeneration, neuroprotection, axons, peripheral nervous system, protein folding, homeostasis

Abstract

Damage to axons in the central and peripheral nervous systems (CNS and PNS) triggers complex biochemical responsesthatare essential for formulating successful recuperation plans. Chaperone proteins, which have a variety of post-injuryroles and responses, are important players in these processes. The purpose of this systematic review is to clarify the rolesof chaperone proteins in axonal regeneration and injury by combining data from fifty different studies. Notwithstandingthe disparities in research methodology among the studies, our analysis highlights the vital roles chaperone proteins playin maintaining cellular homeostasis, safeguarding neurons, and promoting regeneration after damage. Depending on thetype of damage, chaperones take on distinct roles that affect immunological responses, maintain protein integrity, andimprove neuroprotection. Despite methodologicaldifferences, this knowledge provides potential for customized treatmentinterventions and rehabilitation approaches for nerve injury. Our thorough analysis highlights the critical function thatchaperone proteins play in maintaining cellular homeostasis,protecting protein integrity, and offering neuroprotection.These adaptable chaperone proteins are essential for controlling immunological reactions, enabling protein folding,assisting with healing, and encouraging regeneration. Moreover, their impact onnerve healing and axonal regenerationis noteworthy, demonstrating their multifaceted and complex functions in brain regeneration and damage repair. Ourknowledge of the complex roles that chaperone proteins play in the setting of axonal injury and regeneration is improvedby this comprehensive review. Through the application of rigorous systematic review methodologies to synthesize existingmaterial, we have shown the vital role of these proteins in different aspects of nerve healing. This information opens newfields of inquiry into the role of chaperone proteins in neuron regeneration and post-injury repair, as well as opportunities
for focused therapeutic uses and future study.

Author Biographies

Nabila Maudy Salma

Master’s Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia

Ria Margiana

Department of Anatomy, Faculty of Medicine, Universitas Indonesia

Ahmad Aulia Jusuf

Department of Histology, Faculty of Medicine, Universitas Indonesia

References

David S, Ousman SS. Recruiting the immune response to promote axon regeneration in the injured spinal cord.

Neuroscientist. 2002;8:33-41. doi: 10.1177/107385840200800108

.Zhang, E., Yi, M. H., Shin, N., Baek, H., Kim, S., Kim, E., et al. (2015). Endoplasmic reticulum stress impairment

in the spinal dorsal horn of a neuropathic pain model. Sci. Rep. 5:11555. doi: 10.1038/srep11555

.Costigan M, Mannion RJ, Kendall G, Lewis SE, Campagna JA, Coggeshall RE, et al. Heat shock protein 27:

developmental regulation and expression after peripheral nerve injury. J Neurosci. 1998;18:5891-5900.

.Liu, H. M., Yang, L. H., and Yang, Y. J. (1995). Schwann cell properties: 3. C-fos expression, bFGF production,

phagocytosis, and proliferation during Wallerian degeneration. J. Neuropathol. Exp. Neurol. 54, 487–496. doi:10.1097/00005072-199507000-00002

.Chen YW, Li YT, Chen YC, Li ZY, Hung CH. Exercise training attenuates neuropathic pain and cytokine expression

after chronic constriction injury of rat sciatic nerve. Anesth Analg. 2012;114:1330-1337. doi:10.1213/ANE.0b013e31824c4ed4

.Sharma, H. S., Muresanu, D. F., Lafuente, J. V., Sjoquist, P. O., Patnaik, R., and Sharma, A. (2015). Nanoparticles

exacerbate ubiquitin and heat shock protein expressions in spinal cord injury: neuroprotective effects of theproteasome inhibitor carfilzomib and the antioxidant compound H-290/51. Mol. Neurobiol. 52, 882–898. doi:10.1007/s12035-015-9297-9

.Chidlow G, Wood JP, Casson RJ. Expression of inducible heat shock proteins Hsp27 and Hsp70 in the visual pathway of rats subjected to various retinal ganglion cell injury models. PLoS ONE. 2014;9:e114838. doi:10.1371/journal.pone.0114838

.Xu, D., Cui, S., Sun, Y., Bao, G., Li, W., Liu, W., et al. (2011). Overexpression of glucose-regulated protein 94 after

spinal cord injury in rats. J. Neurol. Sci. 309, 141–147. doi: 10.1016/j.jns.2011.06.024

.Bangaru ML, Weihrauch D, Tang QB, Zoga V, Hogan Q, Wu HE. Sigma-1 receptor expression in sensory neurons

and the effect of painful peripheral nerve injury. Mol Pain. 2013;9:47. doi: 10.1186/1744-8069-9-47

.Madduri, S., and Gander, B. (2010). Schwann cell delivery of neurotrophic factors for peripheral nerve regeneration.

J. Peripher. Nerv. Syst. 15, 93–103. doi: 10.1111/j.1529-8027.2010.00257.x

.Campisi J, Fleshner M. Role of extracellular HSP72 in acute stress-induced potentiation of innate immunity in active

rats. J Appl Physiol (1985). 2003;94:43-52. doi:10.1152/japplphysiol.00681.2002

.Cauley KA, Sherman TG, Ford-Holevinski T, Agranoff BW. Rapid expression of novel proteins in goldfish retina

following optic nerve crush. Biochem Biophys Res Commun. 1986;138:1177-1183. doi: 10.1016/S0006-291X(86)80406-5

.de la Puente B, Nadal X, Portillo-Salido E, Sánchez-Arroyos R, Ovalle S, Palacios G, et al. Sigma-1 receptors

regulate activity-induced spinal sensitization and neuropathic pain after peripheral nerve injury. Pain.

(2016);145:294-303. Doi: 10.1016/j.pain.2009.05.013

.D'Antonio M, Michalovich D, Paterson M, Droggiti A, Woodhoo A, Mirsky R, et al. Gene profiling and

bioinformatic analysis of Schwann cell embryonic development and myelination. Glia. 2006;53:501-515. doi:10.1002/glia.20309

pathway of rats subjected to various retinal ganglion cell injury models. PLoS ONE. 2014;9:e114838. doi:10.1371/journal.pone.0114838

.Xu, D., Cui, S., Sun, Y., Bao, G., Li, W., Liu, W., et al. (2011). Overexpression of glucose-regulated protein 94 after

spinal cord injury in rats. J. Neurol. Sci. 309, 141–147. doi: 10.1016/j.jns.2011.06.024

.Bangaru ML, Weihrauch D, Tang QB, Zoga V, Hogan Q, Wu HE. Sigma-1 receptor expression in sensory neurons

and the effect of painful peripheral nerve injury. Mol Pain. 2013;9:47. doi: 10.1186/1744-8069-9-47

.Madduri, S., and Gander, B. (2010). Schwann cell delivery of neurotrophic factors for peripheral nerve regeneration.

J. Peripher. Nerv. Syst. 15, 93–103. doi: 10.1111/j.1529-8027.2010.00257.x

.Campisi J, Fleshner M. Role of extracellular HSP72 in acute stress-induced potentiation of innate immunity in active

rats. J Appl Physiol (1985). 2003;94:43-52. doi:10.1152/japplphysiol.00681.2002

.Cauley KA, Sherman TG, Ford-Holevinski T, Agranoff BW. Rapid expression of novel proteins in goldfish retina

following optic nerve crush. Biochem Biophys Res Commun. 1986;138:1177-1183. doi: 10.1016/S0006-291X(86)80406-5

.de la Puente B, Nadal X, Portillo-Salido E, Sánchez-Arroyos R, Ovalle S, Palacios G, et al. Sigma-1 receptors

regulate activity-induced spinal sensitization and neuropathic pain after peripheral nerve injury. Pain.

(2016);145:294-303. Doi: 10.1016/j.pain.2009.05.013

.D'Antonio M, Michalovich D, Paterson M, Droggiti A, Woodhoo A, Mirsky R, et al. Gene profiling and

bioinformatic analysis of Schwann cell embryonic development and myelination. Glia. 2006;53:501-515. doi:10.1002/glia.20309

.Nodari, A., Previtali, S. C., Dati, G., Occhi, S., Court, F. A., Colombelli, C., et al. (2008). α6beta4 integrin and

dystroglycan cooperate to stabilize the myelin sheath. J. Neurosci. 28, 6714–6719. doi: 10.1523/JNEUROSCI.0326-08.2008

.Tsubouchi, H., Ikeda, K., Sugimoto, N., and Tomita, K. (2009). Local application of olprinone for promotion of

peripheral nerve regeneration. J. Orthop. Sci. 14, 801–810. doi: 10.1007/s00776-009-1398-8

.Parcellier, A., Schmitt, E., Brunet, M., Hammann, A., Solary, E., and Garrido, C. (2005). Small heat shock proteins

HSP27 and alphaB-crystallin: cytoprotective and oncogenic functions. Antioxid. Redox Signal. 7, 404–413. doi:10.1089/ars.2005.7.404

.Cízková D, Lukácová N, Marsala M, Kafka J, Lukác I, Jergová S, et al. Experimental cauda equina compression

induces HSP70 synthesis in dogs. Physiol Res. 2005;54:349-356.

.Willis, D., Li, K. W., Zheng, J. Q., Chang, J. H., Smit, A. B., Kelly, T., et al. (2005). Differential transport and local

translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons. J. Neurosci. 25, 778–791. doi: 10.1523/JNEUROSCI.4235-04.2005

.Sakurai, M., Aoki, M., Abe, K., Sadahiro, M., and Tabayashi, K. (1997). Selective motor neuron death and heat

shock protein induction after spinal cord ischemia in rabbits. J. Thorac. Cardiovasc. Surg. 113, 159–164. doi:10.1016/S0022-5223(97)70411-2

.Reddy, S. J., La Marca, F., and Park, P. (2008). The role of heat shock proteins in spinal cord injury. Neurosurg.

Focus 25:E4. doi: 10.3171/FOC.2008.25.11.E4

.Zochodne, D. W. (2008). Neurobiology of Peripheral Nerve Regeneration. New York, NY: Cambridge University

Press.

Downloads

Published

2023-12-31