AN EIF4G-RECRUITING APTAMER INCREASES THE FUNCTIONALITY OF IN VITRO TRANSCRIBED MRNA
DOI:
https://doi.org/10.53555/eijmhs.v4i2.36Keywords:
mRNA, eIF4G, aptamer, Pseudouridine, 5 methyl cytosine,, dendritic cellsAbstract
Background: As a versatile and safe vector, in vitro transcribed messenger RNA (ivt mRNA) is currently being intensively evaluated as an active pharmaceutical ingredient. Its therapeutic uses encompass vaccination, cell reprogramming, genome engineering, gene complementation and the expression of protein drugs (e.g., growth factors or antibodies).
Objectives: The therapeutic efficacy of ivt mRNA correlates with the efficacy of its translation. Untranslated regions (UTRs) from stable mRNA, such as globin mRNA, and optimized 5’ cap structures have been used to improve the functionality of ivt mRNA. However, the recruitment of the eukaryotic initiation factor 4E (eIF4E) protein to the 5’ end of transfected ivt mRNA remains a ratelimiting parameter for translation.
Method: We added aptamer sequences that bind the eiF4G protein to the 5’ UTR of ivt mRNA.
Results: One of the tested aptamer sequences produced a several fold increase in ivt mRNA expression (specifically, an increase of threefold to over tenfold depending on mRNA sequence and cell type).
Conclusion: This simple modification of the 5’ UTR of ivt mRNA may represent an efficacious and general method for improving the therapeutic index of all new mRNA-based therapeutic products.
References
.Sahin, U., Kariko, K., and Tureci, O. (2014) mRNA-based therapeutics-developing a new class of drugs, Nature reviews. Drug discovery 13, 759-780.
.Pascolo, S. (2004) Messenger RNA-based vaccines, Expert Opin Biol Ther 4, 1285-1294.
.Pascolo, S. (2017) Messenger RNA: The Inexpensive Biopharmaceutical, Journal of Multidisciplinary Engineering Science and Technology (JMEST) 4, 6937-6941.
.Probst, J., Weide, B., Scheel, B., Pichler, B. J., Hoerr, I., Rammensee, H. G., and Pascolo, S. (2007) Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent, GeneTher 14, 1175-1180.
.Bahl, K., Senn, J. J., Yuzhakov, O., Bulychev, A., Brito, L. A., Hassett, K. J., Laska, M. E., Smith, M.,Almarsson, O.,Thompson, J., Ribeiro, A. M., Watson, M., Zaks, T., and Ciaramella, G. (2017) Preclinical and ClinicalDemonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses, Mol Ther 25,1316-1327.
.Kranz, L. M., Diken, M., Haas, H., Kreiter, S., Loquai, C., Reuter, K. C., Meng, M., Fritz, D., Vascotto, F.,Hefesha, H., Grunwitz, C., Vormehr, M., Husemann, Y., Selmi, A., Kuhn, A. N., Buck, J., Derhovanessian, E.,Rae, R.,Attig, S., Diekmann, J., Jabulowsky, R. A., Heesch, S., Hassel,J., Langguth, P., Grabbe, S., Huber,
C., Tureci, O., and Sahin, U. (2016) Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy, Nature 534, 396-401.
.Rittig, S. M., Haentschel, M., Weimer, K. J., Heine, A., Muller,M. R., Brugger, W., Horger, M. S., Maksimovic, O., Stenzl, A., Hoerr, I., Rammensee, H. G., Holderried, T. A., Kanz, L., Pascolo, S., andBrossart, P. (2011)Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induceclinical benefit in vaccinated patients, Mol Ther 19, 990-999.
.Rittig, S. M., Haentschel, M., Weimer, K. J., Heine, A., Muller, M. R., Brugger, W., Horger, M. S., Maksimovic,
O., Stenzl, A., Hoerr, I., Rammensee, H. G., Holderried, T. A., Kanz, L.,Pascolo, S., andBrossart, P. (2016) Long-term survival correlates with immunological responses in renal cell carcinoma patients treated with mRNA-basedimmunotherapy, Oncoimmunology 5, e1108511.
.Sahin, U., Derhovanessian, E., Miller, M., Kloke, B. P.,Simon, P., Lower, M., Bukur, V., Tadmor, A. D.,
Luxemburger, U., Schrors, B., Omokoko, T., Vormehr, M., Albrecht, C., Paruzynski, A., Kuhn, A. N., Buck, J.,Heesch, S., Schreeb, K. H., Muller, F., Ortseifer, I., Vogler, I., Godehardt, E., Attig, S., Rae, R., Breitkreuz, A.,Tolliver, C., Suchan, M., Martic, G., Hohberger, A., Sorn, P., Diekmann, J., Ciesla, J., Waksmann, O., Bruck, A. K., Witt, M., Zillgen, M., Rothermel, A., Kasemann, B., Langer, D., Bolte, S., Diken, M., Kreiter, S., Nemecek, R., Gebhardt, C., Grabbe, S., Holler, C., Utikal, J., Huber, C., Loquai, C., and Tureci, O. (2017) Personalized RNAmutanome vaccines mobilize poly-specific therapeutic immunity against cancer, Nature 547, 222-226.
.Weide, B., Carralot, J. P., Reese, A., Scheel, B., Eigentler, T. K., Hoerr, I., Rammensee, H. G., Garbe, C., and Pascolo, S. (2008) Results of the first phase I/II clinical vaccination trial with direct injection of mRNA, JImmunother 31,180-188.
.Weide, B., Pascolo, S., Scheel, B., Derhovanessian, E., Pflugfelder, A., Eigentler, T. K., Pawelec, G., Hoerr, I., Rammensee, H. G., and Garbe, C. (2009) Direct injection of protamine-protected mRNA: results of a phase 1/2vaccination trial in metastatic melanoma patients, J Immunother 32, 498-507.
.Lee, T., and Pelletier, J. (2012) Eukaryotic initiation factor 4F: a vulnerability of tumor cells, Future Med Chem 4, 19-31.
.Miyakawa, S., Oguro, A., Ohtsu, T., Imataka, H., Sonenberg, N., and Nakamura, Y. (2006) RNA aptamers to mammalian initiation factor 4G inhibit cap-dependent translation by blocking the formation of initiation factorcomplexes, RNA 12, 1825-1834.
.Tusup, M., and Pascolo, S. (2017) Generation of Immunostimulating 130 nm Protamine-RNA nanoparticles, Methods in molecular biology 1499, 155-163.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 EPH - International Journal of Medical and Health Science (ISSN: 2456 - 6063)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.